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THE COMPUTATION OF SEXTIC FIELDS 
WITH A CUBIC SUBFIELD AND NO QUADRATIC SUBFIELD 

M. OLIVIER 

ABSTRACT. We describe six tables of sixth-degree fields K containing a cubic 
subfield k and no quadratic subfield: one for totally real sextic fields, one for 
sextic fields with four real places, two for sextic fields with two real places, and 
two for totally imaginary sextic fields (depending on whether the cubic subfield 
is totally real or not). The tables provide for each possible discriminant dK of 
K a quadratic polynomial which defines K/k, the discriminant of the cubic 
subfield and the Galois group of a Galois closure N/Q of K/Q. 

1. INTRODUCTION 

In a previous paper [3] with A.-M. Berg6 and J. Martinet, we described rel- 
ative methods for finding sextic fields with a quadratic subfield up to a given 
bound on the discriminant. These methods were inspired by general consider- 
ations on a geometric approach to this subject explained by J. Martinet in [11] 
(see also [7]). They provide algorithmic tools for constructing extensive tables 
of number fields of given degree and signature in the relative case. Here we 
develop these tools to compute tables of sextic fields with a cubic subfield and 
no quadratic subfield (those fields with both a cubic and a quadratic subfield 
are presented in the tables mentioned above [3]). 

We first require tables of totally real and complex cubic fields k, their integral 
bases, and the decomposition of the rational primes in k. In ?3 we provide an 
outline of the computational methods that we employed. 

The first step relies on geometric methods. Given a signature, a cubic field k, 
and a bound M, it consists of building a list of quadratic polynomials over k 
such that any sextic field K/Q containing k with absolute value of discriminant 
less than M is defined by some of these polynomials. The bound M depends 
on the signature: 7. 107 for totally real sextic fields, 2. 107 for sextic fields 
with four real places, 16* 106 for sextic fields with two real places and a totally 
real cubic subfield, 3 * 106 for sextic fields with two real places and a complex 
cubic subfield, 5. 107 for totally imaginary sextic fields with a totally real cubic 
subfield, and 3. 106 for totally imaginary sextic fields with a complex cubic 
subfield. This is discussed in ?4. 

In the second step, we remove the reducible polynomials and those which 
define a sextic field containing a quadratic subfield (these fields are in the tables 
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described in [3]); using approximations of the roots, we then compute by local- 
ization the relative discriminant DK/k of K/k; a relative integral basis might 
not exist (?5). 

The third step is devoted to testing isomorphisms between sextic fields having 
the same relative discriminant; in our case, this can be done by two differents 
methods which are described in ?6. We choose from among the quadratic poly- 
nomials defining the same sextic field one which gives the smallest index. 

In the fourth step (?7) we determine the Galois group of a Galois closure N 
of K over Q; the classification of such transitive groups of degree six has been 
done, e.g., by G. Butler and J. McKay ([4]; see also [12]). 

Finally, in ?8, we provide some comments on the tables. By class field theory 
we obtain results on imprimitive quartic fields which concern the parity of the 
class number; we also list the minimal discriminants with given infinite Frobe- 
nius for the five isomorphism classes of transitive groups of sixth degree that 
we consider in this paper. 

In order to complete this work, we intend, in a forthcoming paper [13], to 
use the methods of Pohst [14], to compute extensive tables of primitive sextic 
fields for all signatures. 

2. NOTATION 

We denote by K a quadratic extension of a cubic field k; (ri, r2) is the 
signature of K; ZK (resp. Zk ) is the ring of integers of K (resp. k ); N is 
a Galois closure of K/Q; DK/k is the ideal discriminant of K/k; dK is the 
absolute discriminant of K/Q; and dp is the discriminant of the polynomial 
P. 

vp is the valuation associated with the prime ideal , of k (same notation 
with capital letters vV, for q3 in K); Trk/Q (resp. TrK/k ) and Nk/Q (resp. 
NK/k ) are respectively the trace and the norm of k/Q (resp. K/k). 

The cubic field k/Q of discriminant dk is defined by a primitive element 
a; { 1, a, /3 } is an integral basis of Zk, Q (resp. R ) the minimal polynomial 
of a (resp. /l ) (in most of the cases, we have /3 = a 2 ); (a, a', a") (resp. 
(/3, /3', /3")) are the conjugates of a (resp. /l ) under the conjugacy of k/Q. 

The sextic field K is defined by a primitive element 0 over k; its minimal 
polynomial is P(x) = x2 -ax + b e Zk[x]; Ol and 02 are the roots of P;we 
let P' (resp. P" ) be the polynomial with coefficients a' and b' (resp. a" and 
b"), with roots 6l and 6' (resp. 0'" and 06) in an algebraic closure of Q. 

3. COMPUTATION IN CUBIC FIELDS 

If K is a sextic field containing a cubic subfield k, we have 

IdK = dk2 Nk/Q(tK/k ); 

thus, to construct tables of sextic fields having a cubic subfield, and with discrim- 
inant up to a given bound M, we need tables of cubic fields with discriminant 
up to V3. 

Such tables of cubic fields exist (see, for instance, [2, 5, 8, 10] for totally real 
cubic fields, and [1, 15] for complex cubic fields). 

For our purpose, we use the following method: first search for polynomials 
Q(x) = x3 - C1X2 + C2X - C3 in Z[x] defining k/Q, using the inequality of 
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Corollary 2.9 in [11]. Given such a polynomial, using Theorem 2 in [9], we 
compute the discriminant dk . Then we test isomorphisms between cubic fields 
having the same discriminant. Finally, the results in Chapter 3 of [16] allow us 
to find an integral basis of Zk of the form (1, a, /3), with Q(a) = 0. 

In the paper [9] mentioned above, Theorem 1 describes the decomposition of 
the primes in Zk. In fact, in ?5, we make the effective computations required 
to choose an explicit representation of the prime ideals , in Zk above a prime 
rational p so as to be able, given an integer x E Zk and a prime ideal p , to 
compute vp(x). 

The following lemmas can be used to carry out these tasks. 

Lemma 1. For every prime ideal p above p in Zk, there exists a y in Zk such 
that P = PZk + YZk with the following properties: 

(1) vp(y) = 1; 
(2) if i' is another prime ideal above p, VP, (y) = 0. 

(When p is inert, we choose y = p.) 
Proof. If p does not divide the index [7k : Z[a]], by a classical result, the 
prime decomposition modp of the minimal polynomial Q of a gives the 
decomposition of the prime number p in Zk; if Q(x) = HI<i<g 0P(X)ei modp, 
we have PZk = Hi <,g pe', with Pi = PZk + YZk, the degree of 

- 
is the degree 

of pi, and if ei > 1 , then y = Hp(a), otherwise, y = ep(a) or p(a) +p according 
to the p-valuation of Hp(a). 

If p divides the index, it is easy to prove that we can choose el and e2 in 
{O, 1} and u in Z such that y = ela+e2/3+u, depending on the factorization 
modp of Q and R. 

More precisely, the results are (note that in this situation, p divides dQ and 
dR, and the minimal polynomials of a and /3 have a multiple root modp): 

If PZk = p , then Q (resp. R) has a triple root t (resp. t') modp; thus, 
we can take y = a - t if vp(a - t) = 1, and y = /3 - t' otherwise. 

If PZk = p2 P2, then if Q has a simple root t1 and a double root t2 modp, 
we have P2 = (p, a - tl) or (p, a - tl +p); p1 = (p, a - t2) if Vp1(a - t2) = 1; 
if vPI (a - t2) > 1, then p I = (p, /3 - t') if t' is a double root of R modp, 
and . I = (p, a+/3 - t2 - t') if t' is of order 3. In the case when Q has a triple 
root, then R has a single and a double root, so we exchange Q and R in the 
above discussion. 

If PZk = P1P2 with P2 of degree 2, then if Q has a simple root t1 and a 
double root t2 modp, then t I = (p, a - ti1) or (p, a - t +p) ; if VP2 (a -t2) = 1, 
then P2 = (p, a - t2); if not, P2 = (p, /3 - t') if t' is a root of order 2 of R, 
and P2 = (p, a + /3 - t2 - t') if t' is of order 3. If Q has a triple root, exchange 
Q and R as above. 

Finally, if PZk = P1P2P3, the only case is: Q has a simple root t1 and 
a double root t2 modp (idem for R with t' and ti); let pi = (p, a - ti) 

or (p, a - t1 +p) and choose P2 = (p, /3 - t') or (p, /3 - t' +p) and P3 = 

(p, a+ -t2 - t') or (p, a+3 -t2 - t' +P) 5 

Lemma 2. Let p = (p, y) be a prime ideal of Zk of degree 1, y as in Lemma 
1; let X = X1 + X2a + X3/3 (xi in Z) be an integer of Zk, and a (resp. b) in 
Z such that a _ a modep (resp. /U 3 b); finally, let y = xNk/Q(y)/py. Then, if 
vp(xI + x2a + x3b) is > 1, y belongs to p and vP(x) = 1 + vP(y) . 
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Proof. Clearly, vp(xI + x2a + x3b) > 1 is equivalent to vp(x) > 1; moreover, 
(x/y) = (py/Nk/Q(y)) and the hypothesis on y in Lemma 1 imply the result. 5 

Now we have an algorithm to compute vp(x) for x E Zk and , a prime 
ideal of degree f and ramification index e: 

(1) write x = nx' with n E Z and x' = xl + x2a + x3,8 such that 
gcd (xl, x2,x)= 1; 

(2) compute vp (n) = evp (n); 
(3) if f= 3, then vp(x')=0; 
(4) else if f = 2, then PZk = pp' and vp(x') = 2(vp (Nk/Q(x')) - vpl (X/)) 
(5) else if f = 1 and e = 3, then vp(x') = vp(Nk/QQ(x')); 
(6) else compute a and b such that a _ a and JJ _ b mod ; 

we have vp(x') > 1 if and only if vp(x' + x2a + x'b) > 1; in the case of 
vp(x') > 1, Lemma 2 gives a recursion formula, vp(x') = 1 + vp(x") with 
X// = (x'/p)(NklQ(Y)/yY) 

4. COMPUTATIONAL METHODS FOR SEARCHING FOR POLYNOMIALS 

General method.' We give here general relative methods for constructing ta- 
bles of irreducible polynomials P(x) = xm - axm-l +*** + (-1)mam E Zk[X] 
which define a relative extension K/k of degree m, where k is a number 
field of degree n' (n = inn'). The notation is the following: 0 is a primitive 
element (K = k(0)), (OI, .. , Om) are the roots of P in C:; if c is in k, 
(c = cml) ..., c(n')) are the conjugates of c under the conjugacy of k/Q. By 
extension, (p = p(l), ... , p(n')) denote the polynomials whose coefficients are 
the (ash)) 's, and (O (h)) are their roots in C. (1 = a,..., ?an') is an integral 
basis of Zk. Finally, by analogy with the formulation of M. Pohst in [14], we 
define 

m ni 

S(h)(0) = Z(e(h)), S,(0) = ZS(h)(0), 
i=1 h=1 

m ni 

T(h)(0) = E 10h)1l T,(6) = E T(h) 
i=1 h=1 

for 1 < 1 < m . The basic tool of the method is Theorem 2.8 in [11]: 
Theorem. There exists an element 0 E ZK such that K = k(6) and 

1 ( ah)I12 (IdKI 1/(n-n') T2(O) < - 
E: la, + Yn-nl (Men 

Mh= 1 
1d 

where Yq is the Hermite constant in dimension q, and dk (resp. dK) is the 
absolute discriminant of k (resp. K). 

Moreover, 0 is arbitrary modulo Zk4 

In the following, we write cl = l Ein' la(h)I2 and 

m IM /(n-n') c(M) = Yn-nl Mn'd| 

I am grateful to the referee for a number of suggestions which led to improvements in the first 
draft of this section. 
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where M is the bound for the absolute discriminant IdKI of the fields K we 
are looking for, and c2(M) = c1 + c(M); so, the above inequality becomes 
T2(0) <C2(M). 

We now give inequalities to bound the ai's. 
Changing 0 in 0 +), with A E 74, and using the fact that al = Zl<?j<n, al ,; al 

- TrK/k(O) (al,1 E Z), we see that we can choose the a1, j's modulo m. 
Now, we fix a, (hence cl ) among the mn' possible values and search for 

the last coefficient am = Z1< j<n, am,j aj. 
The inequality between arithmetic and geometric means yields the following 

result: 

Ia(h)I2 = r FIoh)I2 < (_ 10h)2) = ( )(0)) 

and therefore the inequality 
nI n' 

1h1 < >T(h)(r~m 1 
Ad a() l2 < 1 A ( T2^ m < m T2 ( 0) Zlam)I M mn ?-~2 ()) ? 

h=1 h=1 

Finally, writing C3(M) = c2(M)m/mm, and applying the above theorem, we 
obtain 

n' 

Z la h)12 < C3(M). 

h=1 

Let bi,1 = Z1<h<n' ?h)?h); we have to compute all (am, j)I<j<n IE Zn' subject 
to 

Zd bijam,iam,j C3(M), 
?<i, j<n' 

where El<i j<n bi,1jxix is a positive definite quadratic form. This can be 
done using the Fincke-Pohst algorithm (see [6]). Note that this method will be 
applied for the other ai 's. 

We search now for a2 i 

For 1 < h < n', we have, a h) = 2((S(h)(0))2 _ SZh)(0)), and 

E .S(h)I2 2 T2(6)2 < c2(3Mi)2 

l<h<n' 

and applying the above algorithm, we calculate the integer points into this el- 
lipsoid. 

To finish, we need to find the other ai's for 3 < i < m. 
We make use of a method due to M. Pohst which allows us to compute a 

bound for the Ti(0), knowing al, a2, and am (cf. Theorem 4 in [14]). Given 
these bounds, we proceed by recursion on i as follows: 

We suppose that we know a3, ... , ai- ; then Newton's formula gives 

aih) = (E-l)ja ah)jSh )(0) + (-1) Sih(h)) , 

and we have 
no 

ZIS(h)(6)2 < 
2 a, g()(0) I < Ti (0) 

h=1 

so, we are able to finish as for the first ai 's. 
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Application to sextic fields. Let us apply the previous method to the totally real 
sextic fields containing the cubic subfield k = Q(a), with discriminant 49, the 
minimal polynomial of a being x3 + X2 - 2x - 1, whose roots are ax1) - 

1.246..., a(2) = -0.445..., a23) = - 1.801.... A Z-basis of Zk is (1, a2, a3), 

with a3 = a2, and we have ax1) = 1.554..., a(2) = 0.198..., a(3) = 3.246.... 
We are looking for polynomials P(x) = x2 - alx + a2 E Zk[xI such that 

K = k(6) and P is the minimal polynomial of 0. 
We take M = 7. 107; first, we have c(M) = 70.949...; we choose a, among 

the eight possible values: 0, 1 , a2, 21 +(2, 1 +a (, a2 +a2, +a2 + a2 
For a, = 0, c3(M) = 1258.446..., and we have to solve the inequality 

3(xI - 3X2 + 3X3)2 + 34(X2- IX3)2 + 7X32 < 1258.446... 

with (xI, X2, x3) E Z3. We find 27294 vectors; among those vectors, only 1001 
give totally real irreducible polynomials satisfying the inequality of the previous 
theorem. 

Irreducibility of quadratic polynomials. Given a polynomial P(x) = x2 -ax+b E 
Zk , we need to test whether it is irreducible over k[x]. To do this, we compute 
approximations of the roots 61, 02, 6', ' 1, 0 6, ; forallreasonabletriples 
(depending on the signature) we test if 6i + 6S + o 6i6 + 6ik + wOk and 
6jO6S6 are in Z. If they are, we guess the possible root of P in Zk and verify 
whether or not it is in Zk 7 

5. RELATIVE DISCRIMINANT 

Let P be a polynomial in the preceding list with discriminant dp; for every 
prime number p dividing Nk/Q(dp), and for each prime ideal p of k above 
p, we have to compute VP (Z)K/k) 

First of all, since dp = f2 DK/k, where f is the index of Zk[0] in ZK, VP(ZK/k) 

and vp (dp) are simultaneously even or odd and VP (ZKk) is zero as soon as 
vP(dp) is. So, we have only to deal with those , for which vp(dp) is not zero. 

We denote by ir a uniformizing parameter at p , and by eo the absolute 
ramification index of (2) in Zk; then, we use local computations. 

We write dp = 7r2lx, with x E k and vp(x) = 0 or 1. The effective 
calculation of DK/k is based on the following two results: 

Proposition 1. If p does not divide (2), then VP(OK/k) = 0 or 1 according to 
whether vp(x) = 0 or 1. If p divides (2) and vP(x) = 1, then VP(ZK/k) = 

1 + 2eO. 

The proof is obvious: if vP(x) = 1, the polynomial X2 - x is an Eisenstein 
polynomial with discriminant 4x; if vP(x) = 0 and if , does not divide 
(2), the discriminant of the polynomial X2 - x has valuation zero in p, and 
therefore vp(tK/k) = 0. *5 

The next proposition deals with the remaining case when , divides (2) and 
vP(x) = 0. 

Proposition 2. Let m = max{n Ix = E mod p}; if m > 2eO, we have Vp(PK/k) 
= 0, and in the others cases, m is odd and VP (K/k) = 2eO - (m - 1). 
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The proof consists of an elementary study of the ramification groups together 
with some results "a la Hecke" concerning quadratic extensions. 5 

It is easy to deduce from the above propositions an algorithm to compute 
VP( Kk) for all prime ideals p: 

Step 1. If vP(dp) = 0, then Vp(K/k) = 0 

Step 2. Else, if vP(dp) is odd, then VP(K/k) = I if p (2) and VP(K/k)= 

1+2e0 if pi (2). 

Step 3. Else (vp(dp) even), if p t (2), then Vp(K/k) = 0. 

Step 4. Else (vp(dp) even and p I (2)) write dp = 7r21x. If x $ El modp2, 
then VP(t/k) = 2eO. Else, if x = E mod p2 and eo = 1, then VP( /k) = 0. 

Step 5. Else (x = E mod p2 and eo 1), if x 5 M modp4, then VP(K/k) = 2 
if eo = 2, and VP(zKk) = 4 if eo = 3. Else, if x = E mod p4 and eo = 2, 
then VP (K/k1) = 0 . 

Step 6. Else (x= modp4 and eo =3), if x EO modp6, then VP(K/k) = 2, 
else VP (ZK/k) = 0 . 

Note that this algorithm needs to know if x is or is not congruent to a square 
mod p12, or p4, or p6. This is done by use of p-adic computation depending 
on the degree of p . 

6. QUADRATIC SUBFIELDS AND ISOMORPHISMS 

Now, we have tables of sextic fields containing a cubic field, with their relative 
discriminants. Those fields with a quadratic subfield are in the tables mentioned 
earlier (see [3]). So, we have to detect whether K contains a quadratic subfield 
k; if the answer is positive, we eliminate those sextic fields from the tables. 
Next, for sextic fields having the same discriminant, we have to test for Q- 
isomorphism. 

Quadratic subfields. If there exists a quadratic subfield k = Q(\/i), then K 
is the compositum k * k and the polynomials P(x) and X2 - m define K/k; 
therefore, the algebraic integer Nk/(Q(dp)dp is a square in Zk and the converse 
is true. This assertion gives an algorithm to test whether k exists or not. 

Otherwise, if we know approximations to the roots of P(x), there exists a 
k if and only if there is a partition {0i, 6, 'j!} and {02, 0G-i, ?3_j} (for i 
and j among 1 and 2) of the six conjugates of 0 such that k = Q((sI, S2, S3) 

or k = Q(Vd k), (si, 52, 53) being the elementary symmetric functions of 

Consequently, this provides another method for testing if there is a quadratic 
subfield: for all possible permutations of { 1, 2}, we calculate approximations 
of the si 's and we test if the si 's are quadratic integers. 

Isomorphisms. We give here two methods for testing the existence of a Q- 
isomorphism between sextic fields with the same discriminant. 

First we refer to [3, ?5] for a general method; in our case, let K = k(O) and 
L = k((o) be two sextic fields containing k and defined by polynomials P and 
Q in Zk[X]. Note that since neither K nor L contains a quadratic field, the 
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cubic subfield k is unique. Thus, K and L are isomorphic if and only if there 
exists a permutation a of { 1, 2} such that for h = 0, 1 the sums 

ah= Z QOe(i), ah = Z 6 0 (i) , ah = Z OIh 9(.) 
1<i<2 1<1<2 1<i<2 

belong respectively to k and its conjugates. A numerical computation with 
sufficient accuracy allows us to decide this effectively. 

The second method is based on the following observation: if K and L are Q- 
isomorphic, they are k-isomorphic unless K is cyclic; in this last situation, we 
need to take into account the possible conjugacies. Therefore, K = k(vfAI) and 
L = k(-) are isomorphic if and only if Al/u is in k2, i.e., Nk/Q(A)/Nk/Q(8) 
is a square in Q . 

7. GALOIS GROUPS 

One can find in [4] the sixteen possible transitive permutation groups of 
degree six which may be associated with each sextic field. Among these six- 
teen groups, only five correspond to a sextic field with a cubic subfield and no 
quadratic subfield (two of them are even). 

We give in the table below all such groups for K = k(v/A), according to the 
permutation group defined by the cubic subfield k ( C, is the cyclic group of 
order n, Sn is the symmetric group on n letters, and A, is the subgroup of 
even permutations in Sn ), and the degree of k = Q( Nk/)) and k2 = 

Q(V'dik) over Q. 

type of K type of k k, , k2 possible r, 's 

A4 C3 k= k2 = Q 6, 2 

A4 X C2 C3 [k: Q]=2, k2=Q 6, 4, 2, 0 

S4+ S3 ki=Q, [k2: ]=2 6, 2 (*) 

S4- S3 k,= k2, [k1:] =2 6, 2, 0 

S4 X C2 S3 [k: Q] = [k2: ]=2 6, 4, 2, 0(**) 

(*) two possible Frobenius substitutions when r1 = 2 
(**) idem when ri = 2 or 0. 

S4+ (resp. S4 ) denotes the even (resp. odd) permutation of S4 on six letters. 

By examining the above table we can easily deduce an algorithm to compute 
the type of K/Q: 

If k is of type C3, then the type of K is A4 if Nk/Q(Q) is a square, and 
A4 x C2 if not. 

If k is of type S3, then the type of K is S4+ if Nk/Q(A) is a square, SZ7 if 

Nk/IQ()/dk is a square, and S4 x C2 otherwise. 
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Actually, the effective computation is simply done using the following com- 
putational trick: We write dk = d f f2 in such a way that d = 1 means that the 
type of k is C3 (if dk = mg2 with m squarefree, then d = m and f = g 
if m 1_ mod4, and d = 4m, f = g/2 in the other cases). To conclude, it 
suffices to know Nk/Q(dp) ; if d = 1 , then the type of K is A4 when Nk/Q(dp) 
is a square, otherwise A4 x C2; if d $ 1 , then the type is S4 if Nk/Q(dp) is a 
square, else S7 if Nk/Q(dp)/d is a square, and S4 x C2 otherwise. 

8. A LOOK AT THE TABLES 

The algorithms were implemented on a "sparc-station 1." 
The bounds for the discriminants depend only on the signature and on the 

running time of the algorithms; intensive use of the multiprecision package 
"PARI" allowed us to avoid being concerned about the size of the integers 
(these may be about 17 decimal digits in the case of polynomial discriminants). 

We chose M = 70,000,000 (resp. 20,000,000, 16,000,000, 3,000,000, 
50,000,000 and 3,000,000) for rl = 6 (resp. 4, 2 and totally real cubic sub- 
field, 2 and complex cubic subfield, 0 and totally real cubic subfield, and 0 and 
complex cubic subfield); we found respectively 947, 994, 850, 1448, 724, 
and 1548 sexticfieldsfor 27771, 20434, 16908, 15100, 18296, and 17080 
irreducible polynomials with suitable signature. On the workstation mentioned 
above, the cpu-running times were respectively 101, 27, 23, 11, 68, and 12 
minutes. 

Distribution of the sextic fields according to Galois type. We give below the 
distribution of these fields according to signature and Galois type. 

sign. IdKI max. A4 A4 x C2 S S4 S4 x C2 

6 69948333 6 507 45 3 386 

4 19983523 x 470 x x 524 

2 (r.) 15981056 16 359 131 8 336 

2 (i.) 2999824 x x 113 x 1335 

O (r.) 49843600 x 370 x x 354 

0 (i.) 2999959 x x x 29 1519 

(" x " means "impossible"; r. ( resp. i.) points out that the cubic subfield is totally real (resp. 
complex).) 

Note that the norm of the Zk-index of Zk[O] in ZK which we found is equal 
to 1 most of the time; the number of exceptions is 30 (resp. 21, 45, 30, 16, and 
31) for r1 = 6 (resp. 4, 2 and totally real cubic subfield, 2 and complex cubic 
subfield, 0 and totally real cubic subfield, 0 and complex cubic subfield). 
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Minimal discriminants. In the next table, we give the minimal discriminant 
of sextic fields containing a cubic subfield but no quadratic subfield for each 
signature and each possible type. 

sign. (6,0) (4,1) (2,2) (0, 3) 

type 

A4 25969216 x 153664 x 

A4 x C2 434581 -103243 31213 -400967 

{ .52441 
S4 338563356224 x 338 

SZ 33076161 x 810448 -85184 

{ r. 109520 f r. -503792 
S4 x C2 1387029 -309123 i. 28037 l i. -10051 

(" x" means "impossible".) 

Coincidences of discriminants. Finally, we show the coincidences of discrim- 
inants that are in each of the six tables of sextic fields (i.e., the number of 
systems of two (resp. three, four, five, and six) nonisomorphic sextic fields with 
the same discriminants). 

r, | | 6 4 2(r.) 2(i.) O(r.) 0(i.) 

2 fields 9 144 116 147 8 155 

3 fields 3 44 27 48 2 57 

4 fields 0 3 3 2 0 0 

5 fields 0 2 0 0 0 2 

6 fields 0 0 0 2 0 0 

Remarks on class numbers. Let k3 be a cubic field; the discriminant of an A4 
or S4 extension (say k4 ) attached to k3 is dk4 = dk3Nk3/Q(Dk6/k3), where k6 is 
an A4 or S4+ sextic field (A4 when k3/Q is cyclic, S4+ otherwise). The signa- 
ture of k4 is given by the following rules: either k6/k3 is unramified at infinity, 
and then k4 is totally real if k3 is totally real, and of mixed signature if k3 is 
complex, or k3 is totally real, two infinite primes of k3 ramify in k6/k3, and 
k4 is totally imaginary. The equality dk4 = dk3 holds if and only if k6/k3 is 
unramified for finite primes. Thus, we recover from the three tables for the sig- 
nature (6, 0) and (2, 2), the well-known lists of coincidences between quartic 



SEXTIC FIELDS WITH A CUBIC SUBFIELD 429 

and cubic discriminants: 1957, 2777, ... , -283, -331, ..., 229; 257, 
our results are in accordance with Godwin's. 

We can describe the corresponding extensions k6/k3 by class field theory. 
When the involved S4 field is not totally imaginary, the extensions k6/k3 are 
in one-to-one correspondence with the subgroups of index 2 in F'k3 when k3 
is not cyclic, and of index 4 and quotient C2 x C2 when k3 is cyclic. Examples 
of S4 extensions appear in the tables, but the smallest A4 example has a 
discriminant (1634 = 705,911,761) which lies beyond the limit of our tables. 
When the S4 field is totally imaginary, we must consider subgroups of F1+ 
which are not pull-backs of a subgroup of F"k3 . This is possible if and only if 
the 2-rank of F1+l is larger than the 2-rank of F"k3 . This never happens when 
k3 is cyclic, and we therefore cannot find A4 examples, but S4 examples can 
be found in our tables. 

Excerpts of the tables. We conclude with some short excerpts from the tables. 
Complete tables can be obtained from the author. They are available on floppy 
disk (source TEX) or on paper (353 pages) (contact the author by e-mail). 

For each of the six tables, we give the first ten sextic fields. The seven columns 
provide the following data: dK, dk, Nk/Q(ZK/k), the Galois group of a Galois 
closure of K/Q, f = Nk/Q(f) such that dp = f2 OK/k, a polynomial P which 
defines K/k, and finally dp. 

The coefficients of the polynomial P are in Zk; so for all the cubic fields 
which appear in the second column of the tables, we give below a polynomial 
which defines k/Q and an integral basis for Zk of the form (1, a, /), /f 
being a quadratic polynomial in a. 

Signature (6, 0) 

434581 49 181 A4 x C2 1 X2 - ax+(1 +a - 3fi) -4 - 4a+ 13/. 
703493 49 293 A4 x C2 1 X2 - (1 + a)x + (-1 + a) 5 - 2a + / 
905177 49 377 A4 x C2 1 X2 - fix+( -I - 2a - /) 3+7a+7/J 
1279733 49 533 A4 x C2 1 X2 - fix+ ((-4- Ia - 5/.) 15 + 43a + 23/. 
1292517 81 197 A4 x C2 1 X2 - ax + (3 + 7a - 5fi) -12 - 28a + 213 
1387029 257 21 S4 x C2 1 x2 - (1 +a+f)x+(I +2a+fi) 3+7a+4/.1 
1397493 81 213 A4 x C2 1 X2 - (1 +a+fl)x+(2+ 10a - 3fi) -5 - 31a+ 18/. 
1528713 81 233 A4 x C2 1 x2 - (1 + a + f)x + (4 + 10a - 4fi) -13 - 31a + 22 
1683101 49 701 A4 x C2 1 x2 - (a+ f)x+(-13+4a+6fi) 53 - 13a - 22/ 
1997632 49 832 A4 x C2 1 x2 + (3 + 6a - 7/) -12 - 24a + 28 

Signature (4, 1) 

-103243 49 -43 A4 x C2 1 x2 - (1 +a)x+ (-19+ 5a+ 9fi) 77 - 18a - 35/ 
-124659 81 -19 A4 x C2 1 X2 - ax+( -I - 4a - 2fi) 4+ 16a+9/J 
-153664 49 -64 A4 x C2 1 X2+(1 -3a-2/.) -4+ 12a+8/J 
-170471 49 -71 A4 x C2 1 x2 - (1 + a + f)x + (-3 + 3a + 3fi) 14 - 7a - 8/ 
-199283 49 -83 A4 x C2 1 x2 - (1 + a + f)x + 3a 2- 7a+4 
-218491 49 -91 A4 x C2 1 X2 - (1 +a+fi)x+(-2 - 2a+5fi) 10+ 13a - 16 
-304927 49 -127 A4 x C2 1 x2 - fix + (2 + 4a - 4f/ ) -9 - 17a + 19/ 
-309123 321 -3 S4 x C2 1 x2 - (1 + a)x + (-3 + a + fi) 13 - 2a - 3 
-333739 49 -139 A4 x C2 1 x2 - (a + f)x + (19 - 4a - 8fi) -75 + 19a + 34/ 
-334611 81 -51 A4 x C2 1 X2 - ax+( -I - 3a - fi) 4+ 12a+5/.1 
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Signature (2, 2) on a totally real cubic field 

31213 49 13 A4 XC2 1 x2- x?+(-4?+a +2/J) 17 -4a - 8, 
52441 229 1 1 Ix2-x-a I1+4a 
66049 257 1 S 1 x2 - (1+ a+ f)x +(2 + 4a 2fi) - I - 

69629 49 29 A4 XC2 1 X 2-_(I1?a)x?+(-1- 3a -fl) 5?+14a?S fi 
87616 148 4 S 1 x2 - (1+a)x +(2a +fl) 1-6 
98441 49 41 A4 XC2 1 x2-_(1+/1)x +(1+ a) 4-5+5f 
109520 148 5 S4 xC2 1 x2-_(1+ a +f)x +(4+ a) -14 +2a + 5f 
111537 81 17 A4 XC2 1 x2-_(1+ fl)x +(-5 -4a?+5fl) 21 +17a -15fl 
142805 169 5 A4 XC2 1 x2-_x +(3 +2a) -11 - 
153664 49 64 A4 1 X2 +(-2a -/1) 8a +4fl 

Signature (2, 2) on a complex cubic field 

28037 -23 53 S4xC2 1 x2-ax+(-1-2a-fl) 4+8a+5/J 
32269 -23 61 S4 xC2 1 x2-(1+/J)X?(1-/) -++f 
33856 -23 64 S4+ 1 x2 +(-2 -2a -fl) 8?+8a?+4fl 
35557 -31 37 S4 xC2 1 x2-_(1+ a)x +1 -3 +2a +fl 
40733 -23 77 S4 xC2 1 x2 -(a + f)x +(-5 -7a- 4fl) 21 +29a +16fl 
44965 -23 85 S4 xC2 1 x2-_(1?+a+fi)x+ (-1 -a) 6?+7a?+2/J 
47081 -23 89 S4 xC2 1 x2-_(1+ a)x +(-2 +2 + 2fl) 9 -6a - 7, 
50933 -31 53 S4 xC2 1 x2 -(1+ a + f)x +(1+ fl) 3 + 2fl 
53429 -23 101 S4 XC2 1 x2- ax +(1 - a-fl) -4?+4a +5fi 
56144 -44 29 S4 xC2 1 x2 -f8x +&a 1-2a +2,8 

Signature (0, 3) on a totally real cubic field 

-400967 49 -167 A4 XC2 1 X 2 -ix +3 -13- a +3fl 
-465831 81 -71 A4 XC2 1 x2 x+ (2+a) -7 -4a 
-503792 148 -23 S4 xC2 1 x2_x + (4- a-/Jl) -15+4a+4fl 
-573839 49 -239 A4 XC2 1 x2 -(1+ a + f)x +4 -14 +Sa + 4/ 
-602651 49 -251 A4 XC2 1 x2 - ax +(2 -5a +3/1) -8?+20a -lIlfl 
-679024 148 -31 S4 XC2 1 x2- x +(-a +I1) 1 + 4& - 4/1 
-839056 229 -16 S4 xC2 1 x2 -(1+ a + f)x +(1+ 4a+ 3fl) -1 -5a - 5f 
-909979 49 -379 A4 XC2 1 x2 -(1 +a +fl)x?+(1?+4a + 5f) -2-lIla -16fl 
-1142512 404 -7 S4 XC2 1 X2-_ax +(4 +2a) - 16 -8a +/1 
-1178891 49 -491 A4 XC2 1 x2-_cax +(I1- a + ) -4 +4a -3fl 

Signature (0, 3) on a complex cubic field 

-10051 -23 -19 S4 xC2 1 x2_(1+a)x+1 -3 +2a +f1 
-10571 -31 -11 S4 xC2 1 x2-_(1+/1)X?(1+/1) 2af 
-18515 -23 -35 S4 xC2 1 x2 -(a + fl)x?+(-2?+4a -/ 9-l15a+4fl 
-22747 -23 -43 S4 xC2 1 x2 -(1+ a)x +(3 +4a +2fl) -1- 14a -7,8 
-27556 -83 -4 S4 xC2 1 x2 -/lx+1I-+ 
-27848 -59 -8 S4 XC2 1 x2 -(I1?a)x?+(2 +a + f) -7 -2a - 3/ 
-29095 -23 -55 S4 xC2 1 x2 -(a ?fl)x +(1+ 2a +fl) -3 -7a -4fl 
-31211 -23 -59 S4 xC2 1 x2-X+a I1-4a 
-33856 -23 -64 S4 xC2 1 x2 +a 4 
-37479 -31 -39 S4 xC2 1 x2 -(1?+a+fl)x?(-1- 3a+ 5f) 8 +l5a -14f8 
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Totally real cubic fields 

dk ind. polyn. of a integ. basis 

49 1 x3+x2-2x-l (1,a,a2) 
81 1 x3-3x-l (Ia,a2) 

148 1 x3+x2-3x- (, a, a2) 
169 1 x3-x2-4x- (, a, a2) 
229 1 x3-4x-l (Ia,a2) 
257 1 x3 - 5x - 3 (,a, a2) 
321 1 x3 + x2-4x-l (, a, a2) 
404 1 x3-x2-5x-1 (1,a,a2) 

Complex cubic fields 

-23 1 x3 +x2-1 (1,a, a2) 
-31 1 x3-x2-1 (1,a, a2) 
-44 1 x3-x2-x-1 (1,a,a2) 
-59 1 x3+2x2- (, a, a2) 
-83 1 x3-x2+x-2 (1,a,a2) 
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